
ACCU Conference 2012
Conference Sponsors...5

Conference Organization..6

Conference Chair ...6

Conference Committee ...6

Event Manager ...6

Schedule ..7

Tuesday 24 April (Pre Conference Tutorial Day)7

Wednesday 25 April...8

Thursday 26 April ..9

Friday 27 April ..10

Saturday 28 April ...11

Preconference ..12

The C++11 Standard Library - New Features, new Tools, new
Patterns, new Pitfalls (Nico Josuttis) ..12

The Art of Garbage Collector Tuning (for the SUN/Oracle
HotSpot JVM) (Angelika Langer, Klaus Kreft)13

Advanced IT Design and Architecture (Tom Gilb)14

Keynotes..16

Project Patterns: From Adrenalin Junkies to Template
Zombies (Tim Lister) ...16

The Congruent Programmer (Phil Nash)17

Requiem for C (Robert Martin) ..18

Sessions ...19

Agile anti-patterns! Yes your agile project can and will fail
too! (Sander Hoogendoorn)..19

Algebraic Data types for C++ (Andrew Stitcher)......................20

An Introduction to Scout, a Vectorizing Source-to-Source
Transformator (Olaf Krzikalla) ..21

An introduction to Userspace Filesystem Development
(Matthew Turner) ..23

API usability: what it means and why you should care
(Giovanni Asproni) ..24

Building Generic Libraries in C++11 with Concepts (Andrew
Sutton)...25

Business patterns for software developers (Allan Kelly).......26

C will live forever but in the 21st century it looks like this...
(Bernhard Merkle) ...27

C++ Dataflow Parallelism sounds great! But how practical is
it? Let's see how well it works with the SPEC2006 benchmark
suite (Jason McGuinness)..29

C++11 allocators (Jonathan Wakely)..30

C++11 concurrency tutorial (Anthony Williams)31

C++11 for everybody (Dietmar Kuhl)...32

C++11 for the rest of us. Simpler code with more power - Part
1 (Peter Sommerlad)..33

C++11 for the rest of us. Simpler code with more power - Part
2 (Peter Sommerlad)..34

C++11 pub quiz (Olve Maudal) ..35

Coding Dojo (Emily Bache) ...36

Common objections to TDD and their refutations (Seb Rose)
..37

Complexity Thinking? Or Systems Thinking++? (Jurgen
Appelo) ..38

Database development using TDD (Chris Oldwood)39

Dataflow, actors, and high level structures in concurrent
applications (Anthony Williams)...40

'Date::IsBusinessDay()' Considered Harmful! (John Lakos) ...41

Developing a walking skeleton using TDD (Paul Grenyer)42

Devops, Infrastructure-as-code and Continuous Deployment
(Gavin Heavyside) ..43

DSLs from the perspective of extensible languages (Didier
Verna)..44

Embedded Linux Overview (Detlef Vollman)46

Ericsson Finland Agile transformation (Henri Kivioja, Henrik
Taubert)...47

Ethics and professionalism. The current state of affairs
(Giovanni Asproni) ..49

From Crappy to Classy: Legacy Code Resuscitation (Gil
Zilberfeld) ...50

Functional programming you already know (Kevlin Henney)
..51

Getting into git (Pete Goodliffe) ..52

Git in the enterprise (Charles Bailey)53

Go, D, C++ and the Multicore revolution (Russel Winder)55

Groundhog day of a team leader (Zsolt Fabok)56

How to write a testable state machine (Matthew Jones).......57

If it was hard to write it should be hard to read - some
musings on code readability and re-use (Roger Orr)58

Is C going the way of the Dodo? (Dirk Haun)...........................59

Is Scrum incompatible with your brain? (Henrik Berglund) 60

Lambdas in Java 8 (Angelika Langer) ..61

Lean Quality Assurance: Much more cost-effective Quality
Assurance methods than Testing (Tom Gilb)62

Lightning Keynotes (organized by Ewan Milne).....................63

Lightning Talks (organized by Ewan Milne)............................63

Making Jenkins better (Jez Higgins) ...64

Open Source is good for you (Dirk Haun).................................65

Parallel Architectures (Detlef Vollman)...................................66

Paralysis by Parallelism (Russel Winder, Schalk Cronje).......67

Plenty People Programming with the C++ 11 Standard
Library (Nico Josuttis) ...68

Real Teams (Henrik Berglund)...69

Refactoring to functional (Andrew Parker, Julian Kelsey,
Steve Freeman)..70

SOLID deconstruction (Kevlin Henney)....................................71

TDD for Embedded C (James Grenning)....................................72

TDD in Assembler (Olve Maudal)...73

Testing a la carte (Klaus Marquardt) ..74

Testing embedded systems (Klaus Marquardt).......................75

The best and worst new features of the C++11 Standard
Library (Nico Josuttis) ...76

The impact of virtualization on software architectures and
lifecycles - A practical approach (Arno-Can Uestuensoez) ...77

The importance of readability in code (Michel Grootjans) ...79

The Victorian Exploring Expedition of 1860: reflections on
project management and leadership from a real-life
deathmarch project (Jim Hague)...80

UMLGraph and the Declarative Drawing of Diagrams
(Diomidis Spinellis)..81

Unit testing and mocking in C++ (Ed Sykes, Rajpal Singh)82

Variance in Generic Types in Java and C# (Robert Stanforth)
..83

Version control done right (Pete Goodliffe)............................84

What is code simplicity? (Arjan Van Leeuwen)85

When only C will do (Andrew Stitcher)....................................86

Conference Sponsors

Conference Organization

Conference Chair

Jon Jagger

Conference Committee

Astrid Byro
Francis Glassborow
Olve Maudal
Roger Orr
James Slaughter

Event Manager

Archer Yates Associates Ltd
Threshers Yard, West Street
Kingham, Oxon. OX7 6YF
Phone: +44 (0) 1608 659900
Fax: +44 (0) 1608 659911
Email: julie at archer-yates.co.uk

mailto:julie@archer-yates.co.uk?subject=%5bACCU%20Conference%202012%5d%20

Schedule

Tuesday 24 April (Pre Conference Tutorial Day)

10:00 The C++11 Standard Library - New
Features, new Tools, new Patterns, new
Pitfalls

Nico Josuttis

The Art of Garbage Collector Tuning (for the
SUN/Oracle HotSpot JVM)

Angelika Langer,
Klaus Kreft

Advanced IT Design and Architecture

Tom Gilb

17:00

Wednesday 25 April

Room University Cherwell Blenheim Charlbury Wolvercote
09:30 Project Patterns: From Adrenalin Junkies to Template Zombies

Tim Lister

10:30 Coffee break
11:00 The best & worst new

features of the C++11
Standard Library

Nico Josuttis

Git in the enterprise

Charles Bailey

Lambdas in Java 8

Angelika Langer

What is code simplicity?

Arjan van Leeuwen

Business patterns for
software developers

Allan Kelly

12:30 Lunch

WIBU Systems symposium 13:00 - 13:45 (University)
14:00 C++11 for everybody

Dietmar Kühl

Parallel Architectures

Detlef Vollman

Unit testing and mocking
in C++

Ed Sykes,
Rajpal Singh

Ericsson Finland Agile
transformation

Henri Kivioja,
Henrik Taubert

The Victorian Exploring
Expedition of 1860:
reflections on project
management and
leadership from a real-life
deathmarch project

Jim Hague

15:30 Coffee break
16:00 Plenty People

Programming with the
C++ 11 Standard Library

Nico Josuttis

Common objections to
TDD and their refutations

Seb Rose

An introduction to
Userspace Filesystem
Development

Matthew Turner

Database development
using TDD

Chris Oldwood

Surprise

Surprise

17:30 Break
18:00 Lightning Talks

organized by Ewan Milne
19:00 Break
19:30 Atlassian Welcome Party

Thursday 26 April

Room University Cherwell Blenheim Charlbury Wolvercote
09:30 The Congruent Programmer

Phil Nash

10:30 Coffee break
11:00 C++11 for the rest of us.

Simpler code with more
power - Part 1

Peter Sommerlad

Go, D, C++ and the
Multicore revolution

Russel Winder

Developing a walking
skeleton using TDD

Paul Grenyer

Lean Quality Assurance:
Much more cost-effective
Quality Assurance
methods than Testing

Tom Gilb

DSLs from the perspective
of extensible languages

Didier Verna

12:30 Lunch

Electric Cloud symposium 13:00 - 13:45 (University)
14:00 Algebraic data types for

C++

Andrew Stitcher

How to write a testable
state machine

Matthew Jones

Real Teams

Henrik Berglund

Is C going the way of the
Dodo?

Dirk Haun

14:45 When only C will do

Andrew Stitcher

Groundhog day of a team
leader

Zsolt Fabok

Testing a la carte

Klaus Marquardt

Is Scrum incompatible
with your brain?

Henrik Berglund

Open Source is good for
you

Dirk Haun

15:30 Coffee break
16:00 C++11 for the rest of us.

Simpler code with more
power - Part 2

Peter Sommerlad

Dataflow, actors, and high
level structures in
concurrent applications

Anthony Williams

Making Jenkins better

Jez Higgins

Refactoring to functional

Andrew Parker, Julian
Kelsey, Steve Freeman

Surprise

Surprise

17:30 Break
18:00 Lightning Talks

organized by Ewan Milne
19:00 Break
19:30 Red Gate Software XBox Kinect Challenge (Hotel bar)

Friday 27 April

Room University Cherwell Blenheim Charlbury Wolvercote
09:30 Requiem for C

Robert Martin

10:30 Coffee break
11:00 Functional programming

you already know

Kevlin Henney

C++11 allocators

Jonathan Wakely

TDD inAssembler

Olve Maudal

The impact of
virtualization on software
architectures and lifecycles
- A practical approach

Arno-Can Uestuensoez

Devops, Infrastructure-as-
code and Continuous
Deployment

Gavin Heavyside

12:30 Lunch

Red Gate Software symposium 13:00 - 13:45 (University)
14:00 SOLID deconstruction

Kevlin Henney

Building Generic Libraries
in C++11 with Concepts

Andrew Sutton

Version control done right

Pete Goodliffe

"If it was hard to write it
should be hard to read" -
some musings on code
readability and re-use

Roger Orr

Agile anti-patterns! Yes
your agile project can and
will fail too!

Sander Hoogendoorn

15:30 Coffee break
16:00 C++11 pub quiz

Olve Maudal

Complexity Thinking? Or
Systems Thinking++?

Jurgen Appelo

An Introduction to Scout,
a Vectorizing Source-to-
Source Transformator

Olaf Krzikalla

'Date::IsBusinessDay()'
Considered Harmful!

John Lakos

Surprise

Surprise

17:30 Break
18:00 Lightning Talks

organized by Ewan Milne
19:00 Break
20:30 Conference dinner

Saturday 28 April

Room University Cherwell Blenheim Charlbury Wolvercote
09:30 Lightning Keynotes

organized by Ewan Milne
10:30 Coffee break
11:00 C++11 concurrency

tutorial

Anthony Williams

Embedded Linux Overview

Detlef Vollman

API usability: what it
means and why you
should care

Giovanni Asproni

From Crappy to Classy:
Legacy Code Resuscitation

Gil Zilberfeld

Variance in Generic Types
in Java and C#

Robert Stanforth

12:30 Lunch
14:00 C++ Dataflow Parallelism

sounds great! But how
practical is it? Let's see
how well it works with the
SPEC2006 benchmark
suite

Jason McGuinness

Coding Dojo

Emily Bache

UMLGraph and the
Declarative Drawing of
Diagrams

Diomidis Spinellis

C will live forever but in
the 21st century it looks
like this...

Bernhard Merkle

Surprise

Surprise

15:30 Coffee break
16:00 TDD for Embedded C

James Grenning

Getting into git

Pete Goodliffe

The importance of
readability in code

Michel Grootjans

Ethics and
professionalism. The
current state of affairs

Giovanni Asproni

Paralysis by Parallelism

Russel Winder,
Schalk Cronje

17:30 Wrap up

Preconference

The C++11 Standard Library - New Features, new Tools, new
Patterns, new Pitfalls (Nico Josuttis)

One day
C++11, the new C++, is a new approved ISO Standard now and it
will have an enormous impact on C++ application
programmers.
New libraries but also new language features will provide more
features, give more power, and, to some extent, change the
way you program in C++. But these new features also introduce
new challenges, new pitfalls, and new surprises.
In this tutorial Nicolai Josuttis, the author of "The C++ Standard
Library" will present issues you should know about the new
Standard from the point of view of an application programmer
using the C++ Standard Library. The material will focus on all
unexpected and remarkable features he found out while
writing the second edition of his library book.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Nico%20Josuttis

The Art of Garbage Collector Tuning (for the SUN/Oracle
HotSpot JVM) (Angelika Langer, Klaus Kreft)

One day
The HotSpot JVM developed by Sun (now owned by Oracle) has
been refined and revised with every release of the JDK since
the advent of Java in the mid 90ies. Today, Java developers face
an abundance of GC algorithms - from plain and simple serial
stop-the-world collectors with a single reaper thread to highly
parallelized collectors that run several GC threads
concurrently with application threads. Each of these collectors
can be configured and tuned in various ways in order to
control pause times or increase throughput. The number of
choices a Java developer has for configuring the JVM’s garbage
collection for his application is overwhelming. Hence, garbage
collector tuning for the SUN/Oracle JVM is a daunting task.
The workshop aims to shed light onto the garbage collection
strategies in the Sun/Oracle JVM by first explaining all
algorithms (including Java 7’s "G1" collector). We will then
take a look at the collectors’ tuning parameters and will
practice GC tuning in a hands-on session using various tools.
Attendants are asked to bring their notebooks with a Java 7
SUN/Oracle HotSpot JVM. Instructions for installation of
additional tools will be provided in due time. Basic knowledge
of Java is required; substantial knowledge of garbage collection
is not required.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Angelika%20Langer
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Klaus%20Kreft

Advanced IT Design and Architecture (Tom Gilb)

One day
Intended for: People who have some design or architecture
practice and responsibility today, and who want some new and
powerful tools for designing. This is the beginning of a study
leading to competence as IT Design Engineer, or IT
Architectural Engineer.
Background: Most IT design and IT Architecture is currently
based on non-engineering paradigms. There is almost total
absence of quantified requirements for performance, qualities
and costs, as a design basis. There is as good as no practice of
estimation and measurement of the multiple impacts of a
design or architecture on these requirements. In short, design
is practiced in an intuitive manner. Nice words but no
justification or responsibility. This is highly unprofessional and
is damaging to our community. This course will expose, and
make freely available, the set of tools necessary to practicing
real IT Design/Architecture Engineeering.
Syllabus:
• Overview Lecture: "Real Architecture"
• Quantified Requirements as Primary Design Drivers:

Planguage as a basic requirements language.
• Specification Quality Control: Numeric evaluation of

requirements and design specifications.
• Design (Architecture) Specification: Advanced levels of

detail as prerequisite for evaluation.
• Design Impact Estimation: on multiple design drivers of

quality and cost.
• Evo: Getting early and continuous feedback on design

attributes.
• Dynamic Design to Cost: how to meet performance and

quality targets within budgets.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Tom%20Gilb

and deadlines by dynamic learning and adjustment.
Limitations: this one day course cannot train most people to be
design engineers. However, the best participants will have the
basis for beginning the advanced practice and teaching
themselves more. We will be very concrete about the methods,
the case study practices, and give free access to deeper
textbook material. Your awareness of real IT design
engineering will be dramatically raised. Hopefully you will
wish to continue these studies and practices.

Keynotes

Project Patterns: From Adrenalin Junkies to Template Zombies
(Tim Lister)

60 mins
We all talk about “best practices” but a tiny minority of
organizations actually practice them all. But not to worry,
think of "best practices" for human health. We know all about
them, but very few of us actually practice them all. Maybe if
someone did arduously practice all health practices they would
forget to have a life. Tim has come to believe that project
patterns are stronger than best practices. They are the habits,
the decision practices, and the corporate culture, the unstated
rules, which dominate office life. The first key is to identify
your own organization’s patterns. If they are positive, how can
you perpetrate them across all projects? If they are negative,
how can you break the habit? Tim will start the talk with some
examples from the book project. He will then let the audience
offer up some of their own patterns.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Tim%20Lister

The Congruent Programmer (Phil Nash)

60 mins
Why do we do what we do? Are we doing what we want to do?
The way we want to do it? How can we use the answers to
these questions to get better at whatever it was we were doing
in the first place? We don't work in a vacuum. The way we fit
all the pieces together matters and can make a difference. We
spend a lot of time designing how our code fits together. It's
time we did the same to ourselves.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Phil%20Nash

Requiem for C (Robert Martin)

60 mins
For nearly five decades, it's been C. Regardless of what else has
been tried, the new language paradigms that have been
explored, the new semantics that have been probed, C was at
the heart of the successes. C++, Java, C#, Ruby, all took their cue
from C. Indeed C's dominance has been so great that years ago
Dick Gabriel was moved to declare that C was the last
programming language. But all things end, and so it is for C.
It's ascendancy as passed, it's demise is accelerating, and the
end is near. Alas, for C, we knew it well.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Robert%20Martin

Sessions

Agile anti-patterns! Yes your agile project can and will fail too!
(Sander Hoogendoorn)

90 mins
The popularity of agile software development processes and
methodologies is imminent and fast growing. Many
organizations and projects turn towards agile to help solve the
problems of traditional software development. Scrum, extreme
programming, test driven development, and lean are no longer
the new kids on the block. However, with the rising popularity
of agile, mainly due to lack of experience, or management
over-expecting results, the coming years many agile projects
will fail miserably. Agile is not the silver bullet.
In his enthusiastic style speaker Sander Hoogendoorn, global
agile thought leader at Capgemini and involved in agile
projects since the mid-nineties, will demonstrate the
differences in traditional and agile projects, and show why
agile projects will fail – independent of the process used.
Sander will elaborate on a series of agile anti-patterns that
people will recognize immediately. Think of the
Scrumdamentalist, Agile-In-Name-Only, the Pseudo-Iteration,
Guesstimation, the Bob-the-Builder Syndrome, Parkinson’s
Law, the Agile Project Manager, and Student Syndrome. Of
course with many embarrassing examples and anecdotes from
real-life projects.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Sander%20Hoogendoorn

Algebraic Data types for C++ (Andrew Stitcher)

45 mins
With the ratification of C++11, C++ has a few more features that
are usually found in functional programming languages
(lambdas, and "auto" type inference for example).
Algebraic data types are a powerful feature of many functional
languages that can be thought of as a combination of C or C++
style unions and structs - according to some they are "unions
done right". When combined with pattern matching constructs
they enable a very efficient and expressive programming style.
We'll explore some ways to implement both algebraic data
types and their matching operations in C++ and the trade-offs
involved.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Andrew%20Stitcher

An Introduction to Scout, a Vectorizing Source-to-Source
Transformator (Olaf Krzikalla)

90 mins
We present Scout, a configurable source-to-source
transformation tool designed to automatically vectorize C
source code. Scout provides the means to vectorize loops using
SIMD instructions at source level. The tool vectorizes a wide
range of loop constructs and can target various modern SIMD
architectures. The respective SIMD instruction set is easily
configurable by the user.
Scout has become an industrial-strength vectorizing
preprocessor and it is used on a day-to-day basis in the
software production process of the German Aerospace Center.
The tool is published under an Open Source license and
available via http://scout.zih.tu-dresden.de
I start the presentation with a short comparision of the tool-
based and library-based approach respecting vectorization.
After that I introduce Scout and describe its capabilites and the
underlying technology. I demonstrate the basic usage of the
GUI and the integration of the CLI tool in the make process.
Then I explain the vectorization of various forms of loops by
example using the GUI. This includes the handling of
conditions, partial vectorization, outer-loop vectorization,
register blocking, handling of C++ code aso. In addition, I take a
closer look at Scouts' configurability, as well as examine the
ways in which it can be utilized to define gather/scatter
operations, and to vectorize complex idiomatic expressions
(e.g. MIN, MAX). I conclude with a presentation of achieved
performance results and talk about issues limiting the
expectable speedups of SIMD vectorization.
Reference: Krzikalla, O., Feldhoff, K., Müller-Pfefferkorn, R.,
Nagel, W.: Scout: A Source-to-Source Transformator for SIMD-
Optimizations. In: 4thWorkshop on Productivity and

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Olaf%20Krzikalla

Performance (PROPER 2011). Bordeaux, France (August 2011),
accepted for publication.

An introduction to Userspace Filesystem Development
(Matthew Turner)

90 mins
Writing a filesystem can be very cool. Alas, writing a filesystem
is also very hard. This is mainly because coding in the kernel is
hard. Thankfully, most of the pain can be avoided by using a
library like FUSE. Such libraries enable filesystems to be
expressed as simple userspace programmes by taking care of
all that tedious mucking about in kernel space.
This talk will look at the Why and How of such filesystem
development, using FUSE on UNIX. The talk will be very
practical, with code on the screen and maybe even written in
front of your very eyes (if I'm feeling brave).
There will be a short recap of how the VFS works on UNIX and
then we'll dive into writing a filesystem with FUSE.
I'll go over my experiences of developing such filesystems -
architectural patterns, testing, performance, etc. There will
also be a section on the behaviours and gotchas of the libraries
involved.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Matthew%20Turner

API usability: what it means and why you should care
(Giovanni Asproni)

90 mins
Programmers, explicitly or implicitly, when working on
complex systems, end up designing some APIs to accomplish
their tasks, either because the product itself is some kind of
general purpose library or because they need to write some
libraries and packages to put some common code of their
applications.
There is plenty of information available about how to write
clean and maintainable code, but not a lot about writing usable
APIs. The two things are related, but they are not the same. In
fact, clean code is code that is clean from the point of view of
its maintainers, usable APIs, on the other hand, refer to code
that programmers (other than the original author) find easy to
use. We'll see how usable APIs help in writing clean code (and
vice-versa).
In this session I will introduce the concept of API usability,
explain its importance--e.g., impact on productivity and
defects--and show its relation with clean code, as well as some
(sometimes surprising) research results from literature. I will
also give some practical advice on how to start writing more
usable APIs.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Giovanni%20Asproni

Building Generic Libraries in C++11 with Concepts (Andrew
Sutton)

90 mins
Every working generic library is inherently based on concepts:
requirements on template arguments that specify its intended
use within the template. These concepts may be represented in
the library documentation, comments in the source code,
specialized programming frameworks, or (as is too often the
case) simply in the head of the programmer. Unfortunately,
concepts cannot be directly expressed in the C++11
programming language.
In this talk, we look at the design and implementation of
Origin, a collection of generic libraries designed specifically for
C++11. Over the past five years, Origin has served as a testing
ground for exploring new programming idioms and ideas using
the emerging C++11 programming language. More recently it is
being used to evaluate the design of concept libraries for real
programs.
In particular, this talk will focus on the Origin Concept library,
which provides facilities for defining concepts and using them
to check type requirements and implement concept-based
overloading. We will also discuss the semantic aspects of
concepts and how they can be used in testing. We will use
Origin's Algorithm, Iterator, and Range libraries as examples of
what the next generation of C++ generic libraries could look
like.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Andrew%20Sutton
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Andrew%20Sutton

Business patterns for software developers (Allan Kelly)

90 mins
Patterns, patterns everywhere. Patterns exist not just in the
software code but around the code. In the same way patterns
can explain software design they can explain business design.
Some patterns reappear again and again in software companies
big and small. To the entrepreneur, or growing business, these
patterns offer an opportunity to learn from others. Software
architects can benefit too by better understanding the business
environment the software exists within.
In this talk Allan Kelly will describe some of the patterns in his
new book, show how they connect together in pattern
sequences and show how budding software entrepreneurs can
make use of these patterns. He will also preview some related
patterns not found in the book.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Allan%20Kelly

C will live forever but in the 21st century it looks like this...
(Bernhard Merkle)

90 mins
There is nothing like C when it comes to the bare metal and
real embedded development. It is still one of the most popular
languages and unlikely to be replaced in the near future.
However there are quite a few problems in the language and
especially for developers in the embedded area. Problems are:
missing encapsulation concepts, unsafe operation and types,
no physical units and quantities, no support for common
concepts in the embedded area like tasks, messages or state-
machines. In this session I will show how it is possible to build
modular languages which special emphasis for developing
software for embedded systems. (The principle however can I
domain independent).
We show how to extend the C Programming Language e.g. we
will add: real module/encapsulation concepts, support for
interface/implementation and component base development.
Furthermore typesafe physical units and quantities as a C
language extension will be shown.
Embedded systems often support state-machines so there will
be direct support for programmes with states, triggers, events
and actions as first level concepts. Also different syntax (like
textual, graphical, tabular) can be mixed here.
I will present the power of modular languages and illustrate
and show the idea with an Open Source Projectional Language
Workbench MPS in a real-world embedded software
development scenario. Modular languages and Projectional
workbenches enable us to grow and extend languages easily.
Despite the usual drawbacks of internal DSLs we will build
"first class" language extensions with full IDE comfort and
debugging support. Combined with the tool support, it is really
easy to combine modular languages based on the user needs
and build convenient IDE support at the same time.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Bernhard%20Merkle

The samples will run on a Lego/NXT robot, running a
OSEK/RTOS with C as programming language. In the talk I will
demonstrate the new approach, while in the tutorial the idea is
that people build themselves new language extensions a try
them out with the Lego/NXT robot or a similar embedded real
device.

C++ Dataflow Parallelism sounds great! But how practical is
it? Let's see how well it works with the SPEC2006 benchmark
suite (Jason McGuinness)

90 mins
Maximizing the performance of various types of software on
increasingly large multi-core architectures means
programmers could have to exploit the exposed thread-level
parallelism using the threading API of the OS, which has been
and still is non-trivial. Considerable effort has gone into
investigating alternative models for expressing parallelism in
code, which have been commonly investigated by their effect
upon the performance of the SPEC2006 benchmark suite. Of
these techniques, the dataflow model, such as that expressed
in C++11, just::threads, boost.threads amongst others, has re-
emerged as an interesting technique.
A well designed dataflow library could overcome these issues,
which should:
• Provide efficient parallel algorithms.
• Guarantee, via library design, that race conditions and

deadlocks would not be present.
• The program would execute an efficient parallel schedule

due to the design of the library.
• Address the issues of debugging such parallelised programs.
• Co-exist with other thread libraries such as OpenMP or Intel

Thread Building Blocks.
This presentation will examine how successful was the
application of a data-flow model of parallelism in C++ to the
SPEC2006. This model has been implemented in a library called
(Parallel Pixie Dust), that the author created.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Jason%20McGuinness
http://libjmmcg.sf.net/

C++11 allocators (Jonathan Wakely)

90 mins
The new C++11 standard revised the allocator model used by
the containers in the standard library. This talk will start with
a recap of C++ allocators and their limitations, look at what has
changed, why those changes were made, and whether
allocators are any more useful in C++11 than "that last
template parameter that everyone ignores".

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Jonathan%20Wakely

C++11 concurrency tutorial (Anthony Williams)

90 mins
In this tutorial-style session, I will introduce the C++11
concurrency library in depth, with live practical examples.
This is for both those who've never used concurrency before,
but want to start, and those who have used other concurrency
libraries but want to learn how to take advantage of the C++11
library. I will cover the details of the library, along with
practical guidelines about how best to avoid deadlock, race
conditions and other concurrency problems.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Anthony%20Williams

C++11 for everybody (Dietmar Kuhl)

90 mins
C++ 2011 is now officially adopted and compiler vendors are
adding support to implement the standard. There are many
changes to make programming with C++ more effective. This
presentation concentrates on the many features useful in
everyday programming, excluding changes primarily targeted
at better support for generic programming: although
templates are certainly part of my usual toolbox it seems many
people stay away from them. There is still plenty to talk about:
constexpr, final, overridden, defaulted, or deleted functions,
inherited or delegated constructors, strongly typed enums,
new integer and character types and their literals, uniform
initialization, r-values and move semantics, noexcept
declarations and expressions, automatic types, decltype, new-
style function declaration, and lambda functions, and range-
based loops. Each one of these changes is intended to make C++
simpler in some form although the mere presence of them
makes C++ bigger. Most of these extensions can be used in
isolation i.e. you can choose to only use those parts which
make your life easier. The presentation will introduce the
various features with their objectives and explaining how to
use them. Where applicable it will point out known pitfalls.
Knowing about the many new aspects increases the toolbox
available allows you to make an informed choice of what you
want to use. C++ 2011 is coming: get ready to take advantage of
it!

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Dietmar%20Kuhl

C++11 for the rest of us. Simpler code with more power - Part
1 (Peter Sommerlad)

90 mins
With the publication of the new C++11 ISO standard one might
ask what that will mean to current or past skills in that
language. In addition one could recognize that even Microsoft
leans back to use native C++ instead of the .NET languages for
some new developments to get more power from smaller
hardware.
This tutorial will show how to employ C++11's new features and
some already existing ones to write simpler and faster code to
the one you might have been used to write in C, C++, C#, or
Java.
It especially addresses C++-ish means of abstraction that go
beyond the classic OO-style of programming with virtual
member functions and inheritance. If you are already using
STL algorithms instead of loops, are familiar with lambdas,
functors, function binders, async and futures, and know about
universal initialization syntax, (variadic!) templates, rvalues
and the new meaning of auto, this tutorial might not bring you
many news, except for the fun of solving puzzles on your own
employing all that stuff during its practice sessions.
As a side effect, if you employ Eclipse CDT for your exercises
you might try some new features for TDD, unit testing and
refactoring developed by Peter's students and assistants.
Peter will be on the way of preparing his new C++11 book and
lecture when ACCU will take place, so expect to be his guinea
pig for some of the exercises he intends to make his students
solve from fall 2012 on.
Target Audience
Programmers with an interest in C++11, especially those who
are more familiar with OO-programming as it is given in Java,

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Peter%20Sommerlad

(old) C++, or (simple) C# than the more functional style allowed
by templates and the STL.

C++11 for the rest of us. Simpler code with more power - Part
2 (Peter Sommerlad)

90 mins
See above

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Peter%20Sommerlad

C++11 pub quiz (Olve Maudal)

90 mins
Join us for a pub quiz on C++. You will be working in groups
where I present interesting code snippets in C++ and you will
discuss, reason about and sometimes need to guess what the
code snippet will print out. There will be many educational
snippets where we elaborate on the basics of C++, but some of
the snippets will be really hard with surprising answers and
where we explore the dark and dusty corners of the language.
There will be several C++11 based questions. The motivation for
doing the quiz is to learn from each other while having fun.
Solid experience with C++ is essential and some knowledge of
C++11 is useful.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Olve%20Maudal

Coding Dojo (Emily Bache)

90 mins
The coding dojo is a place coders retreat to in order to practice
their coding skills. You can play with new tools and languages,
or concentrate on improving your practice in a specific area. In
all cases, we aim for a safe, collaborative environment where
we learn from each other.
Can you refactor? In really small steps? Can you turn some,
frankly, ugly code into a paradigm of elegant, readable,
extensible design? In this dojo, we’ll give you the chance to do
some deliberate practice. You’ll also get to try out “text-based”
testing - a technique I’ve found particularly helpful when
refactoring legacy code.
I've got some slightly hairy but working code for you to
improve, with versions of it in various programming
languages, (Java, Ruby, Python, C# and C++), so you can choose
one you’re comfortable with. (See it on github). I’ll go through
the problem and how to run the tests before we start coding.
We’ll work in pairs, refactoring and cleaning the code. The idea
is not to re-write it from scratch, but rather to practice taking
small steps, running the tests often, and incrementally
improving the design.
We’ll spend the last part of the session on a retrospective.
Amongst other things we’ll discuss the designs people have
ended up with, and how the choice of programming language
affects things. We’ll also discuss text-based testing and its
applicability to legacy code like this.
If you're going to get the most out of the session, it would help
to install some things in advance, (or plan to pair with
someone else who has). Firstly you'll need a development
environment for the language(s) you'd like to code in.
Secondly, the tests I'll provide will be text-based, and you’ll
find it convenient to use the tool "TextTest" to run them.
There are installation instructions on http://texttest.org

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Emily%20Bache

Common objections to TDD and their refutations (Seb Rose)

90 mins
This is not a session about how or why to practice TDD. Based
upon research conducted, I will outline the most common
objections to TDD and describe in detail, with examples, how to
refute, avoid or mitigate each of them. The coverage will
acknowledge that there are risks inherent to all techniques
and will not promote the idea that TDD is some kind of silver
bullet.
The session will combine the formal presentation of slideware
with active engagement of attendees to provide further
objections and to contribute to the discussion of how to
maximise the value that TDD (and automated unit testing in
general) can deliver.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Seb%20Rose

Complexity Thinking? Or Systems Thinking++? (Jurgen Appelo)

90 mins
People have been using the term Systems Thinking for a few
decades. But nowadays we sometimes hear the term
Complexity Thinking. Some claim that comparing complexity
thinking to systems thinking is like comparing Einsteinian
physics to Newtonian physics. Others claim that complexity
thinking is nothing more than systems thinking in a
fashionable jacket.
In this session we discuss using models (metaphors, analogies,
mathematics, patterns) to try and make sense of the world. We
have a look at complexity theory and we will see that it doesn't
go well with the traditional scientific method. In social
systems, such as software projects, the standard approaches of
reductionism, prediction and control don't work very well.
Even systems thinkers make the mistake of trying to apply the
traditional scientific method to social systems.
It is better to use complexity thinking, which is all about
complex systems, complexity absorption, diversity, narratives,
context, reflexivity, exploration, uncertainty and interaction.
And what does this all have to do with Lean and Agile software
development? Do theoretical debates on terminology really
help us to better manage our business? The answer is yes.
Because "There is nothing as practical as good theory" (Kurt
Lewin) and "Without theory there is no learning." (John
Seddon).

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Jurgen%20Appelo

Database development using TDD (Chris Oldwood)

90 mins
The modern day RDBMS is a complex product that offers so
much more than just data persistence. The SQL language, with
its vendor specific variants such as T-SQL, provides the ability
to develop code in various forms to read, transform & write
that data efficiently. This code requires constant testing right
from its inception through its various incarnations until it is
finally retired.
TDD is a technique that promotes writing those tests at the
front of the development process, whether that be because
you’re writing new code or changing existing code. The knock-
on effect of this approach is that your client-based perspective
opens your eyes to potential variations in the implementation,
and that is where the second ‘D’ in TDD turns from
Development into Design. With a solid automated test suite
and Continuous Integration under your belt too the world of
refactoring opens itself up so that your database design can
safely evolve.
This session looks at applying the same principles and
disciplines used in other areas of system development to tame
the ever increasing complexity that has arisen from the
maturity of the RDBMS.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Chris%20Oldwood

Dataflow, actors, and high level structures in concurrent
applications (Anthony Williams)

90 mins
In this session I will give an overview of various high level
approaches to concurrency, including dataflow architectures
and actor libraries. Examples will be drawn from several
languages and platforms, including C++ and Groovy

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Anthony%20Williams

'Date::IsBusinessDay()' Considered Harmful! (John Lakos)

90 mins
Professional developers create software in response to
perceived business needs. All too often, the stated
requirements come with extra baggage that would
unreasonably constrain proper factoring of the problem and
therefore its solution: "Write me a 'Date' class that tells me
whether today is a business day." Given such malformed
specifications, it is incumbent on developers to distil the true
requirements.
Thoughtful, fine-grained factoring of software offers many
important practical advantages. Individual components, being
small and focused, often fall into one of a handful of familiar
class categories, making them easier to understand, document,
test, and maintain. Packaged properly, these carefully crafted,
stable sub-solutions can be reused individually and collectively
to address other business needs without modification, leading
to a powerful form of reuse that we call "hierarchical reuse".
In this talk, we begin by reviewing our component-based
development methodology, including basic physical design
concepts. We then proceed to analyze the valid business need
of efficiently implementing the substantial machinery
necessary to address the domain of dates and business days
alluded to above. Along the way, we apply our knowledge of
physical design and fine-grained factoring skills to arrive at a
fully-factored solution -- distributed across many distinct
components having acyclic physical dependencies -- in which
each component is easy to understand and use, and the
resulting collection of stable components is also hierarchically
reusable.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#John%20Lakos

Developing a walking skeleton using TDD (Paul Grenyer)

90 mins
Starting with an (almost) clean IDE Paul will develop a Walking
Skeleton. The walking skeleton was described by Alistair
Cockburn as "... a tiny implementation of the system that
performs a small end-to-end function. It need not use the final
architecture, but it should link together the main architectural
components. The architecture and the functionality can then
evolve in parallel." It is also one of the theme's in Freeman &
Pryce's Growing Object Orientated Software Guided by Tests.
In this session Paul will start with an (almost) clean IDE and
develop a walking skeleton for a simple application and
demonstrate how Test Driven Development (TDD) can be used
even at the system level to test features.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Paul%20Grenyer

Devops, Infrastructure-as-code and Continuous Deployment
(Gavin Heavyside)

90 mins
How often do you deploy new versions of production code?
Once per quarter? Once per month? Just as agile software
development methodologies bring short iterations and always-
working code, Devops methodologies and techniques such as
infrastructure automation and continuous deployment can
enable a business to release production code as often as several
times per day. Frequent releases of incremental functionality
mean lower risk at each release, and functionality being
delivered to customers more quickly.
The DevOps movement is changing the way tech companies
manage their infrastructure. Code is put into production faster
and more safely by breaking down the barriers between
Developers and IT Operations.
To achieve frequent safe releases one of the key things you
need is automated, repeatable infrastructure. Open source
tools like Chef and Puppet enable scripted, testable, repeatable
server configuration every time, on physical hardware and
virtualised or cloud services. Checking your infrastructure
configuration into source control brings reproducibility,
traceability, repeatability, brings developers and operations
closer together
In this talk we will discuss the principles, methods and
practices for achieving a state of continuous deployment,
including developer testing, CI, integration testing and
infrastructure. We will see how automated configuration
management tools such as Chef can enable teams to accelerate
their deployments and launch new services in minutes. I will
highlight specific examples from my own experience of
building a robust, automated data collection and analysis
service for the insurance industry, using Chef and AWS in a
startup.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Gavin%20Heavyside

DSLs from the perspective of extensible languages (Didier
Verna)

90 mins
Creating a domain-specific language (DSL) is inherently a
transversal activity: it usually requires knowledge and
expertise in both the application domain and in language
design, two completely orthogonal areas of expertise. The
difficulty is that either one needs to find people with such dual
competence, which is rare, or one needs to add manpower to
the project by means of different teams which in turn need to
coordinate their efforts and communicate together, something
not easy to do either.
One additional complication is that being an expert developer
in one specific programming language does not make you an
expert in language design -- only in using one of them. DSLs,
however, are most of the time completely different from the
language in which the embedding application is written, and a
general-purpose programming language (GPL), suitable to
write a large application, is generally not suited to domain-
specific modeling, precisely because it is too general.
As a consequence, it is often taken for granted that your
application's DSL has to be completely different from your
application's GPL. But what if this assumption was wrong in
the first place ?
The need for designing a DSL as a completely new language
often comes from the lack of extensibility of your GPL of
choice. By imposing a rigid syntax, a set of predefined
operators and data structures on you, the traditional GPL
approach gives you no choice but to implement your
application's DSL as a different language, with its own lexical
and syntactic parser, semantic analyzer and possibly its own
brand new interpreter or even compiler. A much less widely
accepted view, however, is that some GPLs are extensible, or
customizable enough to let you implement a DSL merely as

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Didier%20Verna
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Didier%20Verna

either a subset or an extension of your original language. The
result is that your final application, as a whole, is now written
in a completely unified language. While the end-user does not
have access to the whole backstage infrastructure and hence
does not really see a difference with the traditional approach,
the gain for the developer is substantial. Since the DSL is now
just another entry point for the same original GPL, there is
essentially only one application written in only one language
to maintain. Moreover, no specific language infrastructure
(parser, interpreter, compiler etc.) is required for the DSL
anymore, since it is simply expressed in terms of the original
GPL. The already existing GPL infrastructure is all that is
needed.
The purpose of this presentation is to envision the process of
DSL design and implementation from the perspective of
extensible GPLs, and to show how the capabilities of the
original application's GPL can have a dramatic impact on DSL
conception. More precisely, the objective of is twofold:
1. showing that by using a truly extensible GPL, implementing
a DSL is considerably simplified, to the point that it may
sometimes boil down to writing a single line of code,
2. exhibiting the most important characteristics of a
programming language that make it truly extensible, and
hence suitable for DSL'ification. Such characteristics are most
notably dynamicity (not only dynamic typing, but in general
all things that can be deferred to the run-time), introspection,
intersession, structural or procedural reflexivity, meta-object
protocols, macro systems and JIT-compilation.

Embedded Linux Overview (Detlef Vollman)

90 mins
More and more embedded systems grow out of a simple self-
written basic system and require a full OS. Linux is a rising star
in this domain and is used in many completely different kind
of systems. But an embedded Linux is not exactly the Linux
you know from your PC. Embedded systems have their
constraints, and they have different requirements in terms of
hardware (memory types, devices), functionality and
reliability. As many embedded systems have realtime
requirements, but Linux per se is not a realtime OS, there exist
various realtime extensions for embedded Linux.
This talk will present all pieces that make up an embedded
Linux system (from bootloader to watchdog, from interrupt
service routine to application). It will present the various
approaches to target specific requirements of embedded
systems like flash memory, MMU-less micro-controllers, space
restrictions and realtime response times. And it will discuss
some broader topics like build systems, software updates and
support and legal aspects. This talk goes not into technical
details, but presents an overview of many aspects of using
Linux in embedded systems.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Detlef%20Vollman

Ericsson Finland Agile transformation (Henri Kivioja, Henrik
Taubert)

90 mins
Ericsson Finland started the Agile transformation in 2008 with
the first Scrum Team. Since then we have scaled up to 30+
teams and set up a complete e2e organizational setup
supporting Agile. This transformation has been (and still is) a
profound change in organizational thinking and culture. We
are now delighted to share our experiences and learnings from
our journey also externally. This is a mature presentation that
has already been presented in different conferences with
success.
After receiving good feedback from many sessions we have
decided to make this presentation even more interesting by
adding different dimensions into it. We would like to present
this change with real persons from different viewpoints (2-4
persons). This will add interaction and more energy into the
presentation.
Organizational view
How agile change is seen in organizational context. High level
goals mapped into individual and team context. How new
product development is seen in mature organization.
Developer view
What are the essential skills for a C++ developer. How to ensure
and improve the pace when moving into new problem
domains. How does agile and scrum change the needed skillset
for a developer. What changes in the toolset have been
necessary to support the agile way of developing software..
Coach/Team view
What is needed to make the change smooth in teams,
individuals and organization. How do I need to change to make
the change happen. How do the team/coach make sure the full
potential of the team(s) is utilized.The importance of really
having well-balanced cross functional teams. How to turn the

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Henri%20Kivioja
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Henrik%20Taubert
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Henrik%20Taubert

pain of tool and environment problems into something
positive.
Product view
What challenges does 10 Years legacy bring to the picture.
What are the telecom characterictics that need to be taken into
account. What is needed from testing.

Ethics and professionalism. The current state of affairs
(Giovanni Asproni)

90 mins
We know how important software is in the modern world.
Almost every thing we use nowadays has some software
running inside.
However, writing code is not a profession--there aren't laws
(in most countries) that require training or any formal
qualification to be allowed to do that--and, as a result,
programmers are not bound to abide to any code of ethics, and
are rarely legally responsible for damages caused by their
code.
Also, according to some, software projects are riddled with
unethical behaviour (see http://drdobbs.com/architecture-
and-design/229402654 and the "The Dark Side of Software
Engineering" book by Robert Glass).
This session aims at exploring this subject further, at shedding
some light at what the current situation really is, and at
proposing some possible ways to alleviate the problems we are
facing.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Giovanni%20Asproni
http://drdobbs.com/architecture-and-design/229402654
http://drdobbs.com/architecture-and-design/229402654

From Crappy to Classy: Legacy Code Resuscitation (Gil
Zilberfeld)

90 mins
Many times we're handed someone else's code. "It's working
code; the last guy who worked on it said so", says our boss.
Then he leaves the room. After close examination, we conclude
there isn't a single test in sight. No proof it works, or a safety
net to make our changes. Just "working" code.
As craftsmen we vowed never to write crap. We intend to try
to do what we can to turn this very smelly piece of code to a
rose garden. But where do we start? How do we proceed?
This is not a theoretical refactoring session. It's hands-on code
resuscitation. We're going to take a "working" piece of C++
code, and carve it, fix it, extract it, test it and add functionality.
We're going to give the code a makeover. We're going to be
proud of it, and the "last guy" won't recognize it. But he'll be
able to add features to it, fix bugs and know he's not damaging
the system.
This session is intended for C++ developers and development
team leaders who would like to learn about tools and practices
to make code production ready. We'll talk about why the code
smells, and how to help it expose its inner beauty.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Gil%20Zilberfeld
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Gil%20Zilberfeld

Functional programming you already know (Kevlin Henney)

90 mins
From JVM to .NET languages, from minor coding idioms to
system-level architectures, functional programming is
enjoying a long overdue surge in interest. Functional
programming is certainly not a new idea and, although not
apparently as mainstream as object-oriented and procedural
programming, many of its concepts are also more familiar than
many programmers believe.
This talk examines functional and declarative programming
styles from the point of view of coding patterns, little
languages and programming techniques already familiar to
many programmers.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Kevlin%20Henney

Getting into git (Pete Goodliffe)

90 mins
Git is becoming increasingly popular as a source control
system, both in the wild yonders of the open source world, and
in corporate environments, where it's gaining traction just as
subversion did just a few years ago. This talk will explain what
all the fuss is about. This talk provides:
• An overview of distributed version control, to understand

how it differs from "traditional" models, what problems it
solves, and what problems it creates.

• An overview of git, explaining it's particular model of usage
and idiomatic workflows.

• An introduction to basic git usageworkflows.
• How to work with other git users.
• How to branch and merge effectively.
• How to use git as a "better subversion" and how to use it to

integrate with an existing subversion repository.
• Tools that'll make your life with git easier.
• Routes into more advanced information.
You'll leave with an understanding of git, and will be able to
start using it immediately.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Pete%20Goodliffe

Git in the enterprise (Charles Bailey)

90 mins
Git is a popular distributed version control tool. It was written
for and is used to maintain the Linux kernel and has been
adopted by many open source projects.
Suitable for commercial environments?
Commercial organizations have requirements for their version
control systems that differ from those of open source projects.
Git can be used in ways that meet many commercial
requirements and many of the strengths that appear to apply
specifically to open source environments can also have value
in a commercial environment.
Installation choice, authentication and access control.
While Git is a distributed tool, most workflows require one or
more shared access repositories for interaction between
developers. There are a number of options to be evaluated
such as hosted solution (e.g. GitHub), a "vanilla" install on a
private server or a potentially more feature-rich third party
solution such as gitolite, gitosis or gitorious. Each choice of
"server" has implications for the implementation of
authentication and access controls.
Moving from a centralized version control tool.
There are obvious differences between a centralized version
control tool and a distributed one but there also some less
obvious differences that will affect which workflows and
practices are most productive.
Team and repository size.
Git repositories can grow very large but this is not usually the
first cause of scalability issues. The most acute scalability
issues come from the frequency with which pushes are
attempted to any single branch. This is usually affected by a
combination of team size and the level of activity on a project.
Often symptomatic of organizational complexity, these
scalability issues can usually be mitigated by choosing a

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Charles%20Bailey

sensible division of projects and responsibilities and by taking
advantage of Git's powerful and flexible branching options.
Sometimes tackling the practical Git issues can provide
surprising insight into the organizational issues.
Supporting developers.
Git has features that can help developers and can be used to
support project standards and practices. Git can be integrated
with automated test tools to provide per-commit or per-push
verification on submitted code. Git hooks can be used to
perform checks on both submitted code and commit metadata.

Go, D, C++ and the Multicore revolution (Russel Winder)

90 mins
C++11 is now with us, but is it too little too late? Can the 10+
year old D finally take the limelight as the successor of C++. Can
the 18 month old language Go sweep aside C, C++ and D.
Certainly Go has the might of Google, and other major players,
behind it as the native code language for working with the
Web and the Cloud. Will C++ evolve fast enough not to be
discarded into the dustbin of programming language history?
This session will look at the concurrency and parallelism
features of these three languages to see if C++ can survive by
pulling on its HPC roots, or whether the C++11 standard marks
the beginning of the end of that language by having focused on
low level infrastructure issues at the expense of the high level
features required for application in the Multicore Era —
models that Go and D already have and are exploiting well.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Russel%20Winder

Groundhog day of a team leader (Zsolt Fabok)

45 mins
Lean thinking and Kanban usually approach an organisation
from the executive or management level, but the people who
are working in development and testing see things a bit
differently. It takes a long journey until a developer feels the
weight of an service level agreement, or understands the
different prioritisation methods. The team leader is the person
who guides the developer and tester on their journey. In my
presentation, I intend to show the team leader's perspective of
Lean thinking and its implementation.
Guiding a team in an organisation which follows the Lean
principles isn't that easy, especially as a team leader.
Unfortunately, it isn't enough to say that "from now on, we are
going to have a limit on the tasks in development phase...",
because this is not enough. People need to get out of their
comfort zones, they must understand the new principles and
they must be more disciplined than in an agile environment.
Additionally, the team leader should report to the
management, and ensure that the Lean and/or Kanban
transition will not have a bad effect on the organisation, for
example missing delivery dates, or quality issues.
During the last three years, I've observed up several different
interesting behaviour patterns and scenarios in what people
did on their Lean journey. In my presentation, I'm going to
show the most interesting ones together with the actions I
took in order to save the situations (e.g. gemba walk,
motivation techniques), and help my teams be better at their
profession and be better Lean thinkers.
Uniquely, I'm also going to prepare several cases where I did
wrong, like in the movie 'Groundhog Day'. One have try over
and over again until he or she finds the right path to follow.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Zsolt%20Fabok

How to write a testable state machine (Matthew Jones)

45 mins
Anyone can code up a state machine, but can you make such a
machine fully testable? Can you prove that it is? Can you do
this repeatably?
This talk presents a way of designing and coding state
machines that ensures separation between the state transition
logic, and the application controlled by state machine. This
separation makes testing very easy because the code under
test no longer has a dependency on the application. Such
dependencies can seriously impede automated unit testing.
Part GOOS, part design patterns, part TDD; the approach adds
tests for expected actions, given incoming events, and these
drive out new states and transitions. Given state transition
logic that is fully testable, layers of tests can be built:
individual state transitions, or sequences of transitions which
in essence test the use cases of the state machine.
The talk will finish with some real world examples to prove the
technique can be applied to more than trivial cases.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Matthew%20Jones

If it was hard to write it should be hard to read - some
musings on code readability and re-use (Roger Orr)

90 mins
The notorious "Real Programmer" first depicted in the online
article "Real Programmers Don't Use Pascal" coined a number
of phrases to describe the activity of many programmers.
There are many more - for example see
http://www.suslik.org/Humour/Computer/Langs/real_prog2.
html
One such phrase is "Real programmers don't comment their
code. If it was hard to write, it should be hard to read." Using
this as a starting point I am going to talk about code
readability. Is this statement true? Should it be true?
What makes code hard to read, and does this matter? I will
look at the interaction between code readability and code
reuse and how it also impacts the 'not invented here'
syndrome.
I will illustrate my talk with a variety of examples of code;
some of it is going to be hard to read and some of it will (I
hope) be much easier.
The examples, reflecting my own experience, are likely to be in
C++, Java and C# with perhaps some other languages thrown in
for good measure. However, in most cases the issue is not so
much with obscrure details of the specific computer language
itself but with the overall way the code is written.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Roger%20Orr
http://www.suslik.org/Humour/Computer/Langs/real_prog2.html
http://www.suslik.org/Humour/Computer/Langs/real_prog2.html

Is C going the way of the Dodo? (Dirk Haun)

45 mins
Triggered by my employer's hand-wringing search for C
programmers, I was wondering: Where do new C programmers
actually come from?
C itself is still very much in use in many areas, yet CS students
only seem to be learning higher level languages at university
these days. While a competent programmer will be able to pick
up pretty much any language in a short time, C does have some
peculiarities - like pointers - that no other programming
language has and that are a common cause of problems.
So what can we do to ensure a steady supply of experienced C
programmers well into the future? Not claiming to have all the
answers, I'd also like to invite the audience to help in
brainstorming.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Dirk%20Haun

Is Scrum incompatible with your brain? (Henrik Berglund)

45 mins
When you start using Scrum, interesting things start
happening in your brain. Scrum exposes a lot of problems, and
you brain tries to make you feel better by automatically
sweeping them under the carpet.
Unfortunately this also means that improvements achieved
will be limited and actually it will make you feel worse rather
than better. This talk will show you how to handle this and
other basic human issues that occur when you start working
on changing and improving. After the talk you will have new
skills that you can apply to make progress on any problem you
care about.
Audience: Mainly developers, but also humans in general

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Henrik%20Berglund

Lambdas in Java 8 (Angelika Langer)

90 mins
Java 8 will introduce elements of functional programming to
the Java programming language - the so-called "lambda
expressions" (formerly known as "closures"). The language
extension will include functional types, lambda expressions,
extension methods, method/constructor references and local
variable capture. The tutorial will explain the new language
features along with their purpose.
Numerous JDK abstractions will be reengineered to use the
new language feature. The most radical overhaul will affect the
JDK collections. Bulk operations (also known as "filter-map-
reduce for Java") will be added to the collections. Their
implementation will optionally offer parallel execution by
multiple threads using a fork-join thread pool.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Angelika%20Langer

Lean Quality Assurance: Much more cost-effective Quality
Assurance methods than Testing (Tom Gilb)

90 mins
QA usually means testing and only testing. Yet testing is a very
expensive and ineffective method of assuring the needed
quality levels. Testing is better used as a last resort, desperate
attempt to assure quality. Quality Assurance is far more than
'test', and it can be far more cost-effective. 'Quality' is far more
than 'bugs'. If you want real competitive quality, you probably
have a lot to learn.
You will be introduced to a set of methods that are 10x more
cost effective than test, and you will learn to perform an Agile
Inspection.
Topics: All are Lean Methods
• How to perform an Agile Inspection
• Measure Quality Levels in Specifications with Inspection
• Defect Prevention Process
• Designing Quality in
• Designing to meet quality within cost
• Quality is far more than Bugs
• Stakeholders Decide Qualities
• Quality Quantification
• Numeric Quality Gateways
• Value Management Process with frequent feedback and

change

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Tom%20Gilb

Lightning Keynotes (organized by Ewan Milne)

60 mins
Lightning Keynotes - kind of like the lightning talks, except
these speakers just won't shut up. The lightning keynotes is a
60 minute sequence of fifteen minute talks given by four
speakers on a variety of topics. There are no restrictions on the
subject matter of the talks, the only limit is the maximum time
length.
We will select the keynote speakers and topics at the
conference itself.

Lightning Talks (organized by Ewan Milne)

60 mins
Each session of lightning talks is a sequence of five minute
talks given by different speakers on a variety of topics. There
are no restrictions on the subject matter of the talks, the only
limit is the maximum time length. The talks are brief,
interesting, fun, and there's always another one coming along
in a few minutes.
We will be putting the actual programme of talks together at
the conference itself. If you are attending but not already
speaking, but you still have something to say, this is the ideal
opportunity to take part. Maybe you have some experience to
share, an idea to pitch, or even want to ask the audience a
question. Whatever it is, if it fits into five minutes, it could be
one of our talks. Details on how to sign up will be announced at
the event, or simply collar Ewan whenever you see him in the
hallway.

Making Jenkins better (Jez Higgins)

90 mins
Jenkins is a widely used and extremely capable continuous
integration server. While it's been available since 2007, under
it's original name of Hudson, in popularity seems to have really
taken off in the past year or so. One of the primary reasons for
its success is it's extremely flexible configuration. Jenkins has a
quite a small core, with most of its functionality provided
through plugins. Jenkins plugins provide access to different
source code control systems, a wide variety of build tools, test
result tracking and charting, static analysis tools, and so on.
Nearly every aspect of Jenkins can be customised via a plugin.
At time of writing there are over 400 different Jenkins plugins
available.
Four hundred is too few.
Over the past two years, we've from dabbling with CI to
Jenkins forming part of our core toolset. Jenkins builds on
checkin, yes, but also deploys builds into development
environments. It runs performances tests and records the
history. It matches tells us which build contains which bug
fixes. It also does our release builds - tagging the repository,
building from the tag, writes release notes telling us which
work packs have been updated, pushes the build up onto the
live server, and emails Ops to say everything is ready to go.
The standard plugins provide the foundation, but the our own
plugins have put Jenkins at the heart of our development
process.
If you want to get the most from Jenkins, you really should
write your own plugins. This session will explain why you
should, what you can change or add to Jenkins, and how to do
it.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Jez%20Higgins

Open Source is good for you (Dirk Haun)

45 mins
While open source applications are widely accepted and used,
both at home as well as at work, using open source
components as part of their software is something that
companies still seem to shy away from. Why is that?
In this talk, we're going to look at some of the reasons for that
reluctancy, e.g. legal reasons or fear of the GPL, and check if
they're valid and how much of a problem they really are in
practice.
As a counterpoint, we’re going to look at the benefits of having
open source components. Also on the agenda: How to find an
open source component that fits your requirements and some
thoughts on giving back to the open source community
without having to give away all your company’s secrets.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Dirk%20Haun

Parallel Architectures (Detlef Vollman)

90 mins
Concurrency is one of the big challenges of computer
programming for a number of years and will continue to be a
major challenge in the near future. But "concurrency" is not a
single feature or mechanism, but it's a whole domain of
mechanisms, problems, aspects, pitfalls, opinions and believes
in an environment that's continously changing.
This talk will provide an overview of concurrency, both in
hardware and software. It will present existing hardware and
current trends in computer architecture that cause
concurrency and common mechanisms in software to leverage
and to manage and control this concurrency.
Examples in software will be shown in C++, but should be
generally understandable without detailed C++ knowledge. No
specific library or API will be presented, but only general
mechanisms.
This talk is not for programmers who want to hear about the
latest thread library in C++. This talk is for programmers and
designers of projects that have to deal with concurrency. No
knowledge of C++ is required.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Detlef%20Vollman

Paralysis by Parallelism (Russel Winder, Schalk Cronje)

90 mins
Mulit-CPU and multi-core architectures have been with us for
a long while now, but are we using them properly: are your
programs running effectively on these platforms, or are your
processes "paralysed by parallelism". Is your mindset locked
by mutexes and do you believe a threadpool is your only hope
of multi-tasking? Do you think actors are only found in movies,
and that pipelines only carry oil?
In this fun-poking session we explore numerous questions that
come up when people try to move on to new concurrency and
parallelism paradigms. Using examples in various languages
we show the audience pragmatic ways of using actors,
pipelines, dataflows, message queues, and possibly other tools
and techniques

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Russel%20Winder
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Schalk%20Cronje

Plenty People Programming with the C++ 11 Standard Library
(Nico Josuttis)

90 mins
What happens if all people in the room solve together some
programming problems covering the C++11 Standard Library?
We will find out ...

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Nico%20Josuttis

Real Teams (Henrik Berglund)

45 mins
In sports we have teams that win together, loose together and
celebrate together. Team members depend on each other.
Using their motivation they can make us gasp as they beat
opponents with seemingly superior skills.
This is somewhat different from the type of "teams" a lot of
companies have been using to develop software. Lately though,
a lot of companies have been asking their people to work in
some sort of self organizing agile team. This is a very similar
idea to the sports team.
This session starts by examining why this major change is
happening and then quickly moves on to show how you can
make real teams a reality where you work. We will be covering
a set of principles that, when put in place, pretty much
guarantee that a real team will form. It does not matter if you
are a developer, scrum master or a line manager. If you want
to, you can make this happen.
You will leave with a set of ideas and tools that you can start
applying right away at your workplace. The goal is that you
will have more fun as you win, loose and create amazing
products together as a team.
Audience: Developers, Scrum masters, managers, ...

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Henrik%20Berglund

Refactoring to functional (Andrew Parker, Julian Kelsey, Steve
Freeman)

90 mins
"Those who know no foreign language know nothing of their
mother tongue" Goethe
Knowing functional techniques leads to better object oriented
code, just as knowing about objects leads to better procedural
code. The trick is getting from here to there.
We will take three key features of imperative languages -
sequence, selection, and repetition - and look at systematic
ways to refactor them to a functional style. These techniques
reveal assumptions about imperative programming and help
developers be more expressive in their workaday
programming languages.
We will discuss the benefits that functional ideas bring (such as
expressiveness, modularity, and safety) and show how we try
to shoehorn them into (sometimes hostile) imperative
languages, in particular Java.
The workshop will include demonstrations and exercises for
attendees to try out themselves.
Schedule (90m total)
5m Introductions and setup
10m What and Why of functional
15m Patterns of Repetition (with demo)
15m Exercise
15m Patterns of Selection and Sequence (with demo)
20m Exercise
10m Wrap up/Discussion

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Andrew%20Parker
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Julian%20Kelsey
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Steve%20Freeman
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Steve%20Freeman

SOLID deconstruction (Kevlin Henney)

90 mins
The SOLID principles are often presented as being core to good
object-oriented practice. Each of S, O, L, I and D do not,
however, necessarily mean what programmers expect they
mean or are taught they mean. By understanding this range of
beliefs we can learn more about our OO practice than just S, O,
L, I and D.
This session starts by going over the SOLID principles, looking
at code examples and also different interpretations of the
principles themselves. Contradictions and questions are
revealed. It is through paradoxes and surprises that we often
gain insights and improve our skills. We will leave SOLID
slightly more fluid, but having learnt from them more than we
expected.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Kevlin%20Henney

TDD for Embedded C (James Grenning)

90 mins
Rumor has it that TDD cannot be used for developing C, let
alone embedded C. The rumor is wrong! TDD can be used
effectively for all forms of C. In the session you'll see how to
break dependencies right down to the silicon. You probably
have some legacy C that is resisting to submit to your test
harness. We'll look at some of the techniques for getting your
legacy C into the test harness.
Many of the challenges in embedded development stem from
the target hardware bottleneck. The bottleneck slows progress
of the embedded software development due to many
contributing factors including non-existent or buggy
hardware, and the inefficiencies of cross-platform
development. The session shows how to effectively use TDD
and object oriented design techniques to overcome the target
hardware bottleneck.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#James%20Grenning

TDD in Assembler (Olve Maudal)

90 mins
You can't do test first in X? Yes you can! While test-driven
development is now an established practice in the industry
and a very powerful tool used by many software professionals,
it is still common to meet developers saying: "TDD? Heard of it,
but certainly not useful/applicable/possible for my kind of
work". While it is true that TDD is not always the best
approach, it is still a technique that is surprisingly useful for
nearly every programming task. In this session I will do a live
demonstration on how you can start from scratch and use TDD
techniques to develop a simple but complete program,
including buffered IO routines, in assembler.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Olve%20Maudal

Testing a la carte (Klaus Marquardt)

90 mins
Testing has become a cardinal virtue of software developers.
And you certainly can become a decent tester from repeated
practice, and learning from your text book. However, you
might agree that your home cooking (repeated practice and a
book on your side) does not yield results similar to a master
cook. No offense meant, it certainly applies to my home
cooking.
So masters do something different. They have spotted
something that makes things not just work, or work better, but
delicious. Plus, most are willing to share their insights and
guide your next steps.
This session invites fellow ACCU participants to share and
present their goodies and insights to the ACCU public. Each
good idea will then be discussed in a workshop, and checked
for applicability and for beneficial combinations in different
settings and domains. Finally, the results will be made
available as a flipchart exhibition.
Schedule:
• presentation of insights and goodies: 40 min
• workshop on applicability and combinations: 40 min
• wrapup and exhibition: 10 min
If you are ready to share, please drop me a line

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Klaus%20Marquardt
mailto:marquardt@acm.org?subject=%5bACCU%202012-Testing%20a%20la%20carte%5d

Testing embedded systems (Klaus Marquardt)

90 mins
This session invites fellow ACCU participants to share their
experiences in testing embedded systems. The idea is similar to
the "Pattern Buffet" that we had in 2009, or the complexity
topic in 2011.
However, the session is split and turns into a workshop
afterwards, so that participants gain more insights on their
particular issues.
Schedule:
• invited talks: selected participants, 10min each (35min)
• feedback: exploration of practices, and a voting on what

would work and what would not (15min)
• consequences for project practices: a workshop on what

testing and design techniques need to be in place to support
the testing approaches (40min)

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Klaus%20Marquardt

The best and worst new features of the C++11 Standard
Library (Nico Josuttis)

90 mins
For the second edition of "The C++ Standard Library" covering
C++11 (C++0x), I tried hard to understand the new features of
both the C++ language and its library. Sometimes I execrated,
sometimes I praised what I found (out). So, let's present my top
goodies and disappointments.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Nico%20Josuttis

The impact of virtualization on software architectures and
lifecycles - A practical approach (Arno-Can Uestuensoez)

90 mins
During the last years the virtualization of complete physical
machines to "programs-only" evolved as a common
technology. The application of this techniques until now are
considered as systems administration approaches only.
In first evolutionary steps the virtual machines are defined as
containers for application specific configurations as so called
appliances. These are defined as simple containers for a set of
programs to be used in combination. This may comprise the
main application and some additional base software. Thus the
targeted advance mainly comprises version consistency and
flexibility in handling and distribution of "application specific
servers and workstations".
The second step evolving from this is the actual usage of
virtual machines within private and public networks as
dynamic distributable servers and workstations packaged as
programs only. These require one interface only as runtime
environment - the hypervisor - thus offer basic support for
scalability and flexibility of actual execution location.
The next step of evolution now is the application of more
granular packaged virtual machines as components to be
assembled to a combined feature set. This approach offers
advance for multiple aspects such as application modularity
and dynamic runtime reconfiguration. One essential feature is
here the introduction of nested virtual machines as virtual
stacks. This provides a logical vertical tree structure for
software components, which is mainly based on network
interfaces only and therefore could be dynamically assembled
and reconfigured, even redistributed component-wise.
The current limitations due performance impact when using
emulators only is going to be eliminated with the now uprising
manycore CPUs, which enable the mapping of the logical

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Arno-Can%20Uestuensoez

structure to a flat array of distributed cores. Thus for
execution with almost no performance impact.
The session demonstrates the application of virtual machines
as virtual components including their application in cloud
based software architectures.

The importance of readability in code (Michel Grootjans)

90 mins
"Any fool can write code that a computer can understand.
Good programmers write code that humans can understand." -
Martin Fowler et al, Refactoring: Improving the Design of
Existing Code, 1999
Objectives of the session: I will show examples of how code can
quickly become unreadable. I will show examples of how to
achieve readabiltiy by refeactoring existing code.
Content: Code should always be expressed as clearly as
possible. Some languages provide flexible ways to enhance
code readability. Ruby leads the way. .net has a extensibility
points to make our life as developers a lot easier.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Michel%20Grootjans

The Victorian Exploring Expedition of 1860: reflections on
project management and leadership from a real-life
deathmarch project (Jim Hague)

90 mins
You know where you're starting from. You know roughly
where you want to go to. You have a fair idea of what you're
going to have to do to get half way there. But you can only
guess what problems you will encounter from that point. Still,
you have a wonderful new technology that will make your
journey much easier, you have generous funding and the
backing of the board, even if some of the detailed objectives
keep changing. What could possibly go wrong?
This session tells the tragic story of the Victorian Exploring
Expedition of 1860. A generously-funded attempt to chart an
overland route to the Gulf of Carpentaria on Australia's north
coast, it ended achieving its primary goal but at a terrible cost,
both financially - it ended 5x over budget - and otherwise, as 8
men perished on what became, literally, a death march project.
We look at the management and leadership failures that
doomed a project that came agonisingly close to success but
ended in disaster, and reflect on parallels with the human
issues in contemporary software development.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Jim%20Hague

UMLGraph and the Declarative Drawing of Diagrams (Diomidis
Spinellis)

90 mins
While a picture might be worth a thousand words, the
hundreds of mouse clicks required to draw and maintain it
often seem like a waste of productive time. Worse, it's
awkward to track mouse-drawn pictures through revision
control, keep them in sync with other parts of our project, or
automatically refactor their contents. Fortunately, computer
power and automatic graph-drawing algorithms have
advanced so as to allow the automatic placement of graph
nodes on a canvas and the routing of the respective edges. So,
we can design our models and other diagrams using a
declarative textual representation (drawing with words), and
then view, publish, and share them in graphical form. Creating
diagrams in a declarative, textual notation has several
advantages. We can focus on our drawing's essential elements,
leverage our code-writing skills, automate the creation
process, and use our editor and other text tools to examine the
picture's properties and perform large-scale changes.
To draw pictures with words we can use many tools and
graphics formats. With the Graphviz system we can draw
directed and undirected relations between elements using a
simple declarative language. Building on top of it UMLGraph
allows the declarative drawing of UML models and the reverse-
engineering of such models from Java code. Pic gives us a
procedural drawing language that lets us define our own
domain-specific drawing language. With Gnuplot we can plot
data and functions in a wide variety of 2D and 3D styles.
Finally, we can plot geographical data through the Generic
Mapping Tools (GMT) or by generating KML files, and we can
obtain additional leverage by having one graphics tool or
script generate output for another.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Diomidis%20Spinellis
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Diomidis%20Spinellis

Unit testing and mocking in C++ (Ed Sykes, Rajpal Singh)

90 mins
We will be talking about our experiences with two C++ mocking
libraries - MockItNow and Hippomocks. We'll also talk about
our experience of using TDD and unit testing in c++. We'll give
an short explanation of mocking and unit testing before
sharing our experiences. We'll also have a look at some other
mocking frameworks although we can't guarantee that we'll
have used them to help write production code :)
Hopefully this talk will help push these proven modern
practices into the C++ world which has been one of the slowest
languages to adopt them.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Ed%20Sykes
http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Rajpal%20Singh

Variance in Generic Types in Java and C# (Robert Stanforth)

90 mins
With the launch of Java 5 in 2004, probably the most attention-
grabbing change to the language was the introduction of
generics. This major extension to the type system brought
with it some startling and often opaque new syntax, with even
the innocuous binary search method in the Java collections
framework having its signature upgraded to "public static <T>
int binarySearch(List<? extends Comparable<? super T>> list, T
key)". These so-called 'wildcard' types are provided to solve
the conundrum of converting between containers of different
but related types, for example List<Cat> and List<Animal>.
In this session we set out the problems associated with such
seemingly plausible conversions, motivating the question of
variance of generic types in object-oriented languages. We
introduce the concepts of covariance and contravariance, and
use them to deduce the precise rules that would apply to a type
system that properly incorporates generics with variance.
The discourse is illustrated with a detailed examination of
Java's solution of 'wildcard' types, which we compare to the
rather different approach to the same problem taken more
recently by C# 4.0. Although Java's formulation encourages us
to think in terms of wildcards, there will emerge some
complementary perspectives on what variant generic types
denote, helping us to make sense of the austere syntax.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Robert%20Stanforth

Version control done right (Pete Goodliffe)

90 mins
In these enlightened times, it's no surprise that developers
should be using version control. We've been doing it for
decades. (Well, some of us have.) However, not all developers
use version control as well as they could. In this talk, we'll look
at how to use version control **well**, not just as place to
dump code, but a sharp tool that is central to the development
process.
We'll investigate some history of source control (inasmuch as
it will help us understand how it works, and how to select the
best kind of tool), look at the kinds of version control tools
available, and their integration into our devevelopment tools
and processes. We'll then investigate workflows that will
turbocharge your personal development regimine and
streamline the way you work with other developers.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Pete%20Goodliffe

What is code simplicity? (Arjan Van Leeuwen)

90 mins
Lots of books have been written about refactoring and code
design, but what is it we're trying to reach? What is our goal in
coding? In this talk and workshop we explore what simple
code means at a low level and at a high level, why simple is
always better, and how we can create simpler code.
In university we were always taught to write elegant code. I
explicitly use the term simple in this talk, because I believe it's
less loaded, and it's easier to get to a definition of what
simplicity really is, while elegance seems more subjective.
Code simplicity is very much related to code readability - by
keeping code simple, we try to keep it understandable and
maintainable for future developers (and probably ourselves).
One of the things we'll do in this talk is to see if we can get to a
definition of simple code that we can all agree with. We'll talk
about existing definitions of the opposite term, code
complexity, and we'll try to find examples of truly simple code
to see if we can determine what it really is that makes that
code simple.
Using examples from production code we'll then take a look at
different situations where code can be made simpler. Using our
definition, we'll try to simplify the code in small groups, and
en route see if we can further specify our definition of simple
code (perhaps we can even simplify it!).

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Arjan%20Van%20Leeuwen

When only C will do (Andrew Stitcher)

45 mins
We've all grown accustomed to the conveniences of C++ and
the so called "scripting" languages like Python or Ruby. The
relative paucity of facilities in C means that the common
wisdom is to only program in C when you need to improve the
performance of your code. But there are other good reason
why you might want or even need to code in C. In this session
we'll discuss some the most important reasons as well as some
of the pitfalls you might encounter on the way.

http://accu.org/index.php/conferences/accu_conference_2012/accu2012_speakers#Andrew%20Stitcher

	Conference Sponsors
	Conference Organization
	Schedule
	Tuesday 24 April (Pre Conference Tutorial Day)
	Wednesday 25 April
	Thursday 26 April
	Friday 27 April
	Saturday 28 April

	Preconference
	The C++11 Standard Library - New Features, new Tools, new Patterns, new Pitfalls (Nico Josuttis)
	The Art of Garbage Collector Tuning (for the SUN/Oracle HotSpot JVM) (Angelika Langer, Klaus Kreft)
	Advanced IT Design and Architecture (Tom Gilb)
	• Overview Lecture: "Real Architecture"
	• Quantified Requirements as Primary Design Drivers: Planguage as a basic requirements language.
	• Specification Quality Control: Numeric evaluation of requirements and design specifications.
	• Design (Architecture) Specification: Advanced levels of detail as prerequisite for evaluation.
	• Design Impact Estimation: on multiple design drivers of quality and cost.
	• Evo: Getting early and continuous feedback on design attributes.
	• Dynamic Design to Cost: how to meet performance and quality targets within budgets.

	Keynotes
	Project Patterns: From Adrenalin Junkies to Template Zombies (Tim Lister)
	The Congruent Programmer (Phil Nash)
	Requiem for C (Robert Martin)

	Sessions
	Agile anti-patterns! Yes your agile project can and will fail too! (Sander Hoogendoorn)
	Algebraic Data types for C++ (Andrew Stitcher)
	An Introduction to Scout, a Vectorizing Source-to-Source Transformator (Olaf Krzikalla)
	An introduction to Userspace Filesystem Development (Matthew Turner)
	API usability: what it means and why you should care (Giovanni Asproni)
	Building Generic Libraries in C++11 with Concepts (Andrew Sutton)
	Business patterns for software developers (Allan Kelly)
	C will live forever but in the 21st century it looks like this... (Bernhard Merkle)
	C++ Dataflow Parallelism sounds great! But how practical is it? Let's see how well it works with the SPEC2006 benchmark suite (Jason McGuinness)
	• Provide efficient parallel algorithms.
	• Guarantee, via library design, that race conditions and deadlocks would not be present.
	• The program would execute an efficient parallel schedule due to the design of the library.
	• Address the issues of debugging such parallelised programs.
	• Co-exist with other thread libraries such as OpenMP or Intel Thread Building Blocks.

	C++11 allocators (Jonathan Wakely)
	C++11 concurrency tutorial (Anthony Williams)
	C++11 for everybody (Dietmar Kuhl)
	C++11 for the rest of us. Simpler code with more power - Part 1 (Peter Sommerlad)
	C++11 for the rest of us. Simpler code with more power - Part 2 (Peter Sommerlad)
	C++11 pub quiz (Olve Maudal)
	Coding Dojo (Emily Bache)
	Common objections to TDD and their refutations (Seb Rose)
	Complexity Thinking? Or Systems Thinking++? (Jurgen Appelo)
	Database development using TDD (Chris Oldwood)
	Dataflow, actors, and high level structures in concurrent applications (Anthony Williams)
	'Date::IsBusinessDay()' Considered Harmful! (John Lakos)
	Developing a walking skeleton using TDD (Paul Grenyer)
	Devops, Infrastructure-as-code and Continuous Deployment (Gavin Heavyside)
	DSLs from the perspective of extensible languages (Didier Verna)
	Embedded Linux Overview (Detlef Vollman)
	Ericsson Finland Agile transformation (Henri Kivioja, Henrik Taubert)
	Ethics and professionalism. The current state of affairs (Giovanni Asproni)
	From Crappy to Classy: Legacy Code Resuscitation (Gil Zilberfeld)
	Functional programming you already know (Kevlin Henney)
	Getting into git (Pete Goodliffe)
	• An overview of distributed version control, to understand how it differs from "traditional" models, what problems it solves, and what problems it creates.
	• An overview of git, explaining it's particular model of usage and idiomatic workflows.
	• An introduction to basic git usageworkflows.
	• How to work with other git users.
	• How to branch and merge effectively.
	• How to use git as a "better subversion" and how to use it to integrate with an existing subversion repository.
	• Tools that'll make your life with git easier.
	• Routes into more advanced information.

	Git in the enterprise (Charles Bailey)
	Go, D, C++ and the Multicore revolution (Russel Winder)
	Groundhog day of a team leader (Zsolt Fabok)
	How to write a testable state machine (Matthew Jones)
	If it was hard to write it should be hard to read - some musings on code readability and re-use (Roger Orr)
	Is C going the way of the Dodo? (Dirk Haun)
	Is Scrum incompatible with your brain? (Henrik Berglund)
	Lambdas in Java 8 (Angelika Langer)
	Lean Quality Assurance: Much more cost-effective Quality Assurance methods than Testing (Tom Gilb)
	• How to perform an Agile Inspection
	• Measure Quality Levels in Specifications with Inspection
	• Defect Prevention Process
	• Designing Quality in
	• Designing to meet quality within cost
	• Quality is far more than Bugs
	• Stakeholders Decide Qualities
	• Quality Quantification
	• Numeric Quality Gateways
	• Value Management Process with frequent feedback and change

	Lightning Keynotes (organized by Ewan Milne)
	Lightning Talks (organized by Ewan Milne)
	Making Jenkins better (Jez Higgins)
	Open Source is good for you (Dirk Haun)
	Parallel Architectures (Detlef Vollman)
	Paralysis by Parallelism (Russel Winder, Schalk Cronje)
	Plenty People Programming with the C++ 11 Standard Library (Nico Josuttis)
	Real Teams (Henrik Berglund)
	Refactoring to functional (Andrew Parker, Julian Kelsey, Steve Freeman)
	SOLID deconstruction (Kevlin Henney)
	TDD for Embedded C (James Grenning)
	TDD in Assembler (Olve Maudal)
	Testing a la carte (Klaus Marquardt)
	• presentation of insights and goodies: 40 min
	• workshop on applicability and combinations: 40 min
	• wrapup and exhibition: 10 min

	Testing embedded systems (Klaus Marquardt)
	• invited talks: selected participants, 10min each (35min)
	• feedback: exploration of practices, and a voting on what would work and what would not (15min)
	• consequences for project practices: a workshop on what testing and design techniques need to be in place to support the testing approaches (40min)

	The best and worst new features of the C++11 Standard Library (Nico Josuttis)
	The impact of virtualization on software architectures and lifecycles - A practical approach (Arno-Can Uestuensoez)
	The importance of readability in code (Michel Grootjans)
	The Victorian Exploring Expedition of 1860: reflections on project management and leadership from a real-life deathmarch project (Jim Hague)
	UMLGraph and the Declarative Drawing of Diagrams (Diomidis Spinellis)
	Unit testing and mocking in C++ (Ed Sykes, Rajpal Singh)
	Variance in Generic Types in Java and C# (Robert Stanforth)
	Version control done right (Pete Goodliffe)
	What is code simplicity? (Arjan Van Leeuwen)
	When only C will do (Andrew Stitcher)

